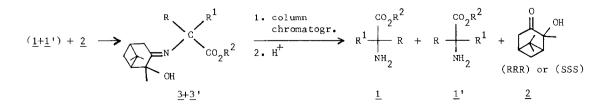
Tetrahedron Letters, Vol.25, No.17, pp 1789-1792, 1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

OPTICALLY PURE X-AMINO ACIDS BY RESOLUTION OF SCHIFF BASES


J.A. Bajgrowicz, B. Cossec, Ch. Pigière, R. Jacquier, Ph. Viallefont*

*Laboratoire de Chimie Organique **Laboratoire de Synthèse et d'Etude Physicochimique E.R.A. Nº 169 Université des Sciences et Techniques du Languedoc 34060 - Montpellier Cédex

SUMMARY : A new general method of resolution of ∝-amino acids via their Schiff bases with 2-hydroxy pinan-3-ones is described. It complements the asymmetric synthesis of ∝-disubstituted amino acids by alkylation of the Schiff bases.

Asymmetric synthesis methods^{1,2} seldom give enantiomerically pure amino acids. Thus, a final resolution procedure is almost always necessary, especially if the compounds are to be used in peptide syntheses. We describe here a new, simple and fast general method for racemic resolution, in connection with our study on the enantioselective alkylation of Schiff bases of \propto -amino esters³.

Unlike other Schiff bases and particularly those of benzaldehyde, which cleave easily under very mild conditions (they undergo dissociation during a simple column chromatography on silicagel⁴), compounds $\underline{3} + \underline{3}$ ' formed from methyl or ethyl amino esters $\underline{1} + \underline{1}$ 'and (+)-(RRR) or (-)-(SSS)-2-hydroxy pinan-3-one (<u>2</u>) are relatively stable. They can be easily chromatographed and gave for all examined compounds a quantitative separation of two diastereoisomers <u>3</u> and <u>3</u>'.

<u>3</u> (<u>3</u> ')	R	R ¹	R ²	2	Yield %		R ^a F : hexane)	[~] _D ²⁰ (c, chloro) oform)
<u>a</u>	n-C ₃ H ₇	Н	сн ₃	+	42	0,43	1:1	+ 71.5°	1,46
<u>b</u>					42	0,22	1:1	- 80,5°	1,70
<u>c</u>	n-C ₃ H ₇	н	СНз	-	40	0,52	1:2	- 71.0°	1,67
<u>d</u>					40	0,27	1:2	+ 81,0°	1,72
<u>e</u>	n-C ₃ H ₇	СНЗ	СНЗ	-	65 ^{bc}	0,35	1:2	- 59,5°	3,19
<u>f</u>	n-C ₃ H ₇	€ Br	СНЗ	+	24 ^b	0,54	1:2	- 22,5°	1,88
<u>8</u>		CH ₂			38 ^b	0,44	1:2	- 3,0°	1,48
h	(О)- сн ₂ -	Н	снз	+	45	0,50	1:2	+ 83,0°	2,96
<u>i</u>					45	0,19	1:2	- 96,0°	2,98
i	н ₃ со ₂ с-(сн ₂) ₂ -	н	сн ₃	+	35	0,24	1:1	+ 90,5°	1,79
<u>k</u>					35	0,14	1:1	- 86,5°	1,92
1	CH2 H	н	С ₂ Н ₅	+	30	0,46	4:1	+ 78,0°	1,58
m			2.5		30	0,28	4:1	- 99,0°	1,60

Table 1 - Schiff bases (3,3') separated

^aTLC on Merck silica gel 60

^b prepared by enantioselective alkylation of 3 + 3! (R₁=H)³

^Cthe (+) isomer was not isolated because of its low content in the crude product mixture before chromatography

In order to avoid any racemisation⁵⁻⁷, the hydrolysis of Schiff bases is carried out under mild acidic conditions : action of 15% aqueous citric acid at 0-3°C for 72 hours. The optical purity (e.e.) 95%) of the separated amino esters was proved by ¹H-NMR spectrometry using d-Eu(hfc)₃ as chiral shift reagent⁸ and by their specific rotation measurements.

Yields of all the intermediary reactions are good : 60-89% for the Schiff bases preparations and at least 72% for the hydrolysis. The chiral reagents $\underline{2}$ are readily available⁹ by permanganate oxidation of respectively (+) or (-)- α -pinene. They do not need to be meticulously purified (to get $[\alpha]_D \pm 41.2^{0.9}$ in chloroform) and we have found that those of $[\alpha]_D \pm 37-38^{\circ}$ can be used successfully ; no other carbonyl compound and no trace (e.e. > 95% based on ¹H-NMR spectra with d-Eu(hfc)₃) of another enantiomer was detected in <u>2</u> used for Schiff bases synthesis. Moreover, there is no epimerisation of <u>2</u> and \sim 70% of it can be recovered after hydrolysis and recycled.

Substrate <u>3</u> or <u>3</u>		Yield %	Config.	[≁] ^{20a} found	(c, solvent) reported or b
a		82	R	-24.5° (2.2,CHC1 ₃)	-25.5° (1.28,CHCl ₃) ^b
Ъ		85	S	+25.5° (1.7,CHCl ₃)	+25.5° (1.20,CHCl ₃) ^b
с	$n-C_{3}H_{7}CH(NH_{2})CO_{2}Me$	79	S	-24.5° (1.2,CHCl ₃)	
đ		81	R	+24.0° (2.1,CHCl ₃)	
e	$n-C_{3}H_{7}C(CH_{3})(NH_{2})CO_{2}Me$	95	R	-13.0° (1.5,EtOH)	-12.9° (0.6, EtOH) ¹³
h		83	R	-16.5° (1.3,CH ₂ Cl ₂)	-16.5° (1.58,CH ₂ Cl ₂) ^b
i	C6 ^H 5 ^{CH} 2 ^{CH(NH} 2) ^{CO} 2 ^{Me}	85	S	+16.5° (1.5,CH ₂ Cl ₂)	$+16.9° (2,CH_2C1_2)^{14}$
j		72	R	-17.0° (1.6,CHCl ₃)	-17.0° (0.95,CHCl ₃) ^b
k	MeO ₂ CCH(NH ₂)(CH ₂) ₂ CO ₂ Me	75	S	+16.5° (1.3,CHCl ₃)	+17.0° (1.23,CHCl ₃) ^b
1	CH2CH(NH2)CO2Et	91	R	-10.5° (3.4,CHC1 ₃)	-10.5° (1.95,CHCl ₃) ^b
m	H	85	8	+10.5° (2.1,CHC1,)	+10.5° (2.20,CHCl ₂) ^b

Table 2 - Amino esters (1,1') by hydrolysis of Schiff bases

[∝]²⁵ for h and i 578

^bfor the amino ester prepared^{11,12} from commercially available optically pure amino acid or amino ester hydrochloride

As indicated in the tables, this method of resolution proves to be of general interest. It applies to \propto -monoalkylated amino acids as well as to the \propto -dialkylated ones, synthesis of which was recently reported³. It gives its full value to the method of synthesis of amino acids by alkylation of Schiff bases^{3,10} : regardless of its enantio-selectivity, optically pure enantiomers can be easily obtained.

Experimental (general procedure) :

A mixture of the (dl)- α -amino acid, transformed into its methyl or ethyl ester by the usual methods (<u>1</u>; 0,1 mol), 2-hydroxy pinan-3-one³ (<u>2</u>; 0,12 mol) and a catalytic amount of boron trifluoride etherate in 150 ml of benzene is refluxed for 3 h using a water trap. The solvent is evaporated in vacuo and the oily residue is chromatographed on 70-230 mesh silica gel (30 parts). The first fractions eluted with an ether-hexane (1:3) mixture, give the unreacted <u>2</u> almost quantitatively. The polarity of the eluent is increased (1:1; the proportions being respectively 3:1 and 5:1 for tryptophan) after collection of the first diastereoisomer. The eluent evaporated, colorless or slighty yellow oils (<u>3</u> and <u>3</u>') are pure enough for analyses. To a stirred solution of the Schiff base $\underline{3}$ (or $\underline{3}$ ') (0,02 mol) in tetrahydrofuran (100 ml) at 0°C, a 15% aqueous citric acid (75 ml) is added dropwise and stirring is continued for 72 hours at 0-3°C. The solvent is evaporated in vacuo at room temperature and $\underline{2}$ is extracted with 2 x 100 ml of benzene.

The water layer is cooled again to 0°C, basified to pH = 8 with conc. ammonia and immediately extracted with 6 x 100 ml of ether. The etheral phases, after drying with sodium sulphate and evaporation at room temp. give 72-91% yield of pure amino ester 1 (or 1'), which optical purity was established by ¹H-NMR spectroscopy (0,15-0,2 M CCl₄/TMS solution in the presence of 0,2 \rightarrow 0,6 molar equivalent of d-Eu(hfc)⁸₃). About 70% of chiral reagent is recovered from the benzenic solution after purification by column chromatography (30 parts of SiO₂; ether-hexane 1:1).

All compounds described here gave MS and ¹H-NMR spectra consistent with their structures. The microanalyses were in satisfactory agreement with the calculated values: $C \pm 0.30$; $H \pm 0.20$; $N \pm 0.30$.

References :

- 1. D. Hoppe, Nachr. Chem. Tech. Lab., 30, 782 (1982).
- 2. D. Hoppe, Nachr. Chem. Tech. Lab., 30, 852 (1982).
- 3. J.A. Bajgrowicz, B. Cossec, Ch. Pigière, R. Jacquier, Ph. Viallefont, Tetrahedron Lett., 3721 (1983).
- 4. D. Rich, J. Jasensky, J. Singh, Dev. Endocrinol., 13, 49 (1981).
- Yu.N. Belokon, V.M. Belikov, V.A. Maksakov, N.G. Faleev, E.A. Paskonova, Izv. Akad. Nauk SSSR, Ser. Khim., 1026 (1978).
- 6. S. Yamada, C. Hongo, R. Yoshioka, I. Chibata, J. Org. Chem., 48, 843 (1983).
- 7. R. Grigg, H.Q.N. Gunaratne, Tetrahedron Lett., 4457 (1983).
- 8. R. Ajisaka, M. Kamisaku, M. Kainosho, Chem. Lett., 857 (1972).
- 9. H. Schmidt, Chem. Ber., 93, 2485 (1960).
- 10. T. Oguri, N. Kawai, T. Schiori, S. Yamada, Chem. Pharm. Bull., 26, 803 (1978).
- R.A. Boissonas, S. Guttmann, P.A. Jaquenaud, J.P. Waller, Helv. Chim. Acta, <u>38</u>, 1491 (1955).
- H. Nesvadba, J. Honzl, J. Rudinger, Collection Czechoslov. Chem. Commun., 28, 1961 (1963).
- 13. U. Schöllkopf, Tetrahedron, 39, 2085 (1983).
- 14. E.P. Kyba, J.M. Timko, L.J. Kaplan, F. de Jong, G.W. Gokel, D.J. Cram, J. Am. Chem. Soc., <u>100</u>, 4555 (1978).

(Received in France 15 January 1984)